A geometric generalization of Kaplansky’s direct finiteness conjecture
نویسندگان
چکیده
Let G G be a group and let alttext="k"> k encoding="application/x-tex">k field. Kaplansky’s direct finiteness conjecture states that every one-sided unit of the ring alttext="k left-bracket upper G right-bracket"> [ stretchy="false">] encoding="application/x-tex">k[G] must two-sided unit. In this paper, we establish geometric theorem for endomorphisms symbolic algebraic varieties. Whenever is sofic or more generally surjunctive group, our result implies generalization near R left-parenthesis k comma right-parenthesis"> R stretchy="false">( , stretchy="false">) encoding="application/x-tex">R(k,G) which X Subscript g Baseline colon element-of X g : ∈<!-- ∈ encoding="application/x-tex">k[X_g\colon \in G] as contains naturally subring homogeneous polynomials degree one. We also prove stable consequence Gottschalk’s Surjunctivity Conjecture.
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Finitely Presented Groups Related to Kaplansky's Direct Finiteness Conjecture
We consider a family of finitely presented groups, called Universal Left Invertible Element (or ULIE) groups, that are universal for existence of one–sided invertible elements in a group ring K[G], where K is a field or a division ring. We show that for testing Kaplansky’s Direct Finiteness Conjecture, it suffices to test it on ULIE groups, and we show that there is an infinite family of non-am...
متن کاملThe Geometric Finiteness Obstruction
The purpose of this paper is to develop a geometric approach to Wall's finiteness obstruction. We will do this for equivariant CW-complexes. The main advantage will be that we can derive all the formal properties of the equivariant finiteness obstruction easily from this geometric description. Namely, the obstruction property, homotopy invariance, the sum and product formulas, and the restricti...
متن کاملA generalization of Kneser's conjecture
We investigate some coloring properties of Kneser graphs. A star-free coloring is a proper coloring c : V (G) → N such that no path with three vertices may be colored with just two consecutive numbers. The minimum positive integer t for which there exists a star-free coloring c : V (G) → {1, 2, . . . , t} is called the starfree chromatic number of G and denoted by χs(G). In view of Tucker-Ky Fa...
متن کاملA Generalization of Graham's Conjecture
Let G be a finite Abelian group of order |G| = n, and let S = g1 · . . . · gn−1 be a sequence over G such that all nonempty zero-sum subsequences of S have the same length. In this paper, we completely determine the structure of these sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2023
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/16333